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An asymptotic analysis is developed for turbulent boundary layers in strong adverse 
pressure gradients. It is found that the boundary layer divides into three 
distinguishable regions: these are the wall layer, the wake layer and a transition 
layer. This structure has two key differences from the zero-pressure-gradient 
boundary layer : the wall layer is not exponentially thinner than the wake ; and the 
wake has a large velocity deficit, and cannot be linearized. The mean velocity profile 
has a yi behaviour in the overlap layer between the wall and transition regions. 

The analysis is done in the context of eddy viscosity closure modelling. It is found 
that k-&-type models are suitable to the wall region, and have a power-law solution 
in the yh layer. The outer-region scaling precludes the usual &-equation. The Clauser, 
constant-viscosity model is used in that region. An asymptotic expansion of the 
mean flow and matching between the three regions is carried out in order to 
determine the relation between skin friction and pressure gradient. Numerical 
calculations are done for self-similar flow. It is found that the surface shear stress is 
a double-valued function of the pressure gradient in a small range of pressure 
gradients. 

1. Introduction 
The adverse-pressure-gradient (APG) boundary layer is of fundamental interest 

because it precedes separation. One must understand how a strong adverse pressure 
gradient distorts the boundary layer before one can address the extremely 
challenging problem of turbulent separation. The APG boundary layer is also of 
interest in its own right : even if the boundary layer does not separate, the adverse 
pressure can affect transport properties and skin friction. The asymptotic structure 
of APG turbulent boundary layers has not previously been investigated, not- 
withstanding the fact that much is known experimentally and theoretically about 
such flows. Asymptotic methods provide a systematic framework which can 
contribute to our understanding of turbulent boundary layers. 

The scaling laws for zero-pressure-gradient (ZPG) boundary layers have been 
known for some time. Formal asymptotic developments were given by Yajnik 
(1970), Mellor (1972) and Bush & Fendell (1972) ; they showed how the law of the wall 
and law of the wake can be viewed as asymptotically distinguished regions, with the 
log-layer their common overlap. When a turbulent boundary layer is subject to a 
substantial adverse pressure gradient this two-region structure no longer applies. 

In the present paper, it is shown that the APG boundary layer requires three 
regions to describe its asymptotic structure (figure 1). At the outset of the present 
investigation it was supposed that the Yajnik-Mellor scaling could be modified such 
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FIQURE 1 .  Mean flow profile for APG boundary layer, showing the three-region structure. 
Experimental data is by Bradshaw and Ferris (Coles & Hirst 1968). 

that a yi layer would replace the log-layer : a yi layer is expected on theoretical and 
experimental grounds (Townsend 1976 ; Perry & Schofield 1973). However, the wall 
and wake regions did not overlap in such a layer : an intermediate region was needed. 
The intermediate region does overlap the wall region in a yi layer on one side, and 
also matches to the wake region on the other side. Thus, the three-layer structure 
arises out of mathematical requirements of the asymptotic analysis. On examination 
of this analysis, i t  becomes apparent that the intermediate layer exists to allow the 
turbulent transport processes to make a transition from their near-wall behaviour to 
their wake-region behaviour. The three-layer structure is consistent with the peak 
turbulent kinetic energy being located well away from the wall, which is a known 
property of APG turbulent boundary layers. 

In the ZPG boundary layer the wake velocity deficit is small, and the mean wake 
velocity is uniform to leading order. The only way the thin wall layer can match to 
this constant wake velocity is for the overlap law to be logarithmic and for the 
perturbation parameter to  vary inversely as the logarithm of the Reynolds number 
(Mellor 1972) ; this is simply a statement of Millikan’s overlap argument in formal 
asymptotic terms. The structure of ZPG boundary layers is a consequence of the 
fullness of the mean velocity profile ; the velocity increases rapidly across a thin layer 
near the wall, then approaches the free-stream velocity more gradually across a thick 
outer region. By contrast, the APG boundary-layer profile may have an initially 
steep rise near the wall, but i t  is then eaten away by pressure gradient, so that it has 
a large wake deficit (figure 1 ) .  In fact, profiles of equilibrium APG layers have almost 
a double boundary-layer form, with an initial upturn in the yi region, followed by a 
slight flattening, with a second upturn in the outer region. The wake profile is not 
full, and the mean momentum equation in the wake region is fully nonlinear. The 
large wake deficit of APG layers invalidates the ‘ Millikan overlap ’ derivation of the 
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log-law. In the presence of a strong APG, matching must take place in regions where 
the mean velocity varies as a power of y. This is a primary analytical distinction 
between APG and ZPG boundary layers. The asymptotic structure of APG layers is 
described in $2. 

The three asymptotic regions of an APG turbulent boundary layer reflect three 
velocity scales which exist in such a flow. They are: the viscous, pressure-gradient 
velocity, defined in $2 ; the free-stream velocity ; and the square-root of the boundary 
layer thickness times kinematic pressure gradient. The first is used to non- 
dimensionalize the mean velocity in the wall region, the second non-dimensionalizes 
the wake region, and the last non-dimensionalizes the middle region. Another 
velocity scale is the friction velocity. In the present analysis this is taken to be of the 
same order as the viscous, pressure-gradient velocity. 

The structure of attached turbulent boundary layers is more complex than that of 
laminar layers. This is because turbulent transport is a property of the flow, while 
viscous transport is a constitutive property. As the pressure gradient alters the mean 
flow, so will the turbulent transport processes alter; this effect does not occur in 
laminar layers. Some conception of the behaviour of turbulent transport is required 
if one is to address the issue of strongly APG boundary layers. Closure models 
provide a basis for such conceptions and, conversely, the asymptotic analysis of the 
structure of the boundary layer provides some guidance to the development of 
closure models (Mellor 1972). Bush & Fendell (1972) and Melnik (1989, 1991) have 
applied asymptotic methods to analyses of algebraic eddy viscosity models. Here we 
use algebraic and &&-types of eddy viscosity models. The relevance of the present 
analysis to the development of such models will be discussed. As usual, much of the 
present analysis could be developed in a more general setting, but models are needed 
to obtain specific results, so we have chosen to introduce an eddy viscosity 
assumption at  the outset. However, this emphasis on turbulence models should not 
detract from the fundamental nature of the present analysis; its relevance is by no 
means restricted to the particular models being considered. 

Our analysis highlights some important properties of the k-& eddy viscosity model. 
The IC-E equations are found to have a power-law solution in the yi layer. This is 
analogous to their solution in the log layer of the ZPG boundary layers. The power- 
law solution is derived in $3. Given the standard model constants, the solution for k 
(the turbulent kinetic energy) and E (its rate of dissipation) is then completely 
determined. Although the k-& model is fundamentally unsuitable near solid 
boundaries, the k - e v  model (Durbin 1991), which accounts for wall blocking and 
anisotropy of the eddy viscosity, has a similar power-law solution. 

The usual &-equation appears to be inappropriate in the wake region of turbulent 
boundary layers; in the present paper, it is found to be inconsistent with the wake 
region scaling. The Clauser, constant eddy viscosity (Clauser 1956) is a popular model 
for this region. That model will be used here. Because the k--E model does not give 
proper wake region scaling, a transition between the k-E (or k-g-v) model for the wall 
layer and the Clauser model for the wake region must occur across the middle layer. 
In the middle region k increases linearly, at a rate determined by matching to the 
wall region. Given this result, the energy equation can then be used as a basis for 
arriving a t  a formula for the transition between the wall and wake transport models 
-the &-equation is not needed. 

In order to determine the skin friction law, the complete problem of matched 
asymptotic expansions must be considered, since ultimately it is the free-stream 
velocity which produces the skin friction at the surface. In order to determine the 
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effect of the free stream at the surface, the transport of mean momentum across the 
boundary layer must be determined, and this requires that the asymptotic matching 
be considered. From the scaling alone, one finds that the ratio of viscous, pressure- 
gradient velocity to  free-stream velocity is of order Reynolds number to the -f 
(equation (2.2)). In  the present analysis the friction velocity is assumed to be of the 
same order of magnitude. Although a -5 power friction law is then true by 
assumption, it is significant that this gives a consistent asymptotic picture. The 
matching problem is addressed in $4. 

The specific case of self-preserving development is addressed in $4.2. This requires 
that the FalknerSkan equation can be solved in the outer region, with boundary 
conditions determined by the inner regions. Our numerical results show that when 
the APG is small, the non-dimensional skin friction decreases with increasingly 
adverse pressure gradient, as one might expect. However, as the skin friction tends 
toward zero, the pressure gradient goes through a broad maximum, so that there is 
a small range in which two equilibrium boundary layers exist for a given pressure 
gradient. Remarkably, this surprising theoretical result agrees with an observation 
made some time ago by Clauser (1954) in an analysis of his experimental data. Since 
the pioneering paper by Clauser, the existence of multivalued equilibrium boundary 
layers has been debated : at present the bulk of experimental evidence concurs with 
Clauser’s observation (Schofield 1981). In  the present theoretical derivation, the 
doubled-valued solution arises from the asymptotic matching conditions and from 
properties of the Falkner-Skan equation. 

2. Scaling of the regions 
We consider a uniform-density, incompressible turbulent boundary layer subject 

to a strong adverse pressure gradient (APG) - a criterion for the adjective ‘strong ’ 
is developed in $2.5. The free-stream mean velocity is U,(x). We define the kinematic 
pressure gradient a, streamwise lengthscale L and viscous pressure-gradient velocity 
u p  by 

a = -u, umz; L 3 vm/a; up = (V.)’. (2.1) 

The definition of up reflects the fact that the relevant dimensional parameters near 
the wall are v (the kinematic viscosity) and a. The small parameter in the present 
analysis is 

where R, is the Reynolds number based on L.  In  general 6 /L ,  where 6 is a measure 
of the boundary-layer thickness, is another small parameter. In  the present analysis 
i t  is sufficient, although not necessary, to let 6 / L  - E ;  this gives the appropriate 
leading-order balance between pressure gradient and turbulence shear stress gradient 
in the middle and outer regions. Given this ordering, one can define 6 such that this 
latter relation is an  equality. I n  most of the analysis it is appropriate to think of S/L 
as the small parameter. The middle and outer regions are inviscid to  lowest order, so 
it would be misleading to associate the small parameter with Reynolds number in 
these regions; perhaps (2.2) should be expressed as R, = c - ~ .  

E = up/um = (va/IP,)+ = R;:, (2.2) 

2.1. The inner region 

The mean flow profile is illustrated by figure 1. The inner, wall region lies closest to 
the surface and extends from the surface to  the yi layer. According to the information 
given by Coles & Hirst (1968), in which the data plotted in figure 1 are tabulated, 
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up = 0.22 m/s, u* = 1.1 m/s, U ,  = 41 m/s, L = 2.28 m and S,~,, = 3 cm for these 
data. This gives B x 0.005. According to figure 1, the inner region is O(B) smaller than 
the overall boundary-layer thickness, and so consists only of the region next to the 
surface, in which U rises steeply. The non-dimensional variables in the inner region 
are distinguished by a hat : 

The lengthscale here is v / u p  = e2L. up  is used for the velocity scale in the inner region. 
The friction velocity u* is inappropriate because it can tend to zero in APG boundary 
layers. In (2.3) vT is the eddy viscosity, k is the turbulent kinetic energy and E is the 
rate of energy dissipation. 

An eddy viscosity model for the Reynolds shear stress will be introduced at the 
outset. Thus, the mean momentum and continuity equations in the boundary layer 
are 

uuz+ vu,+a = ( (v+vT) Uy),, u s +  v, = 0, (2.4) 

where vT is the turbulent eddy viscosity and in which lower-case subscripts 
denote partial differentiation. In the wall region, the k-E eddy viscosity formula, 
vT = C,, k2 /&,  gives the behaviour of vT. In principle, C,, is a constant ; in practice, C,, is 
made a function of y ,  to account for ‘wall damping ’ (Patel, Rodi & Scheurer 1985). (It 
is more fundamentally sound to use the formula vT = C,~?/E,  with C,, now being 
constant (Durbin 1991). However, the k-&formula suffices for the purpose of getting 
the scaling.) The k--E model is discussed in $3. 

In terms of the non-dimensional variables introduced in (2.3), equation (2.4) 
simplifies to 

in the inner region. If the friction velocity u* is defined by ui = vU, at y = 0, then 
(2.5) integrates to 

((l+l?T)oG)ai = 1+0(€2) (2.5) 

because l?, = 0 at $ = 0. Present interest is in an APG that is sufficiently strong for 
uJu,  to be of O(1). 

The no-slip boundary condition to (2.6) is 8 = 0 at y = 0. On general, semi- 
empirical grounds, one expects that as $+ co, o + A u  @. Townsend (1976, eq. 5.14.9), 
following earlier work of Stratford, derives the half-power law from a mixing-length 
model. It is shown in $3 that the k-s model also has this solution, with the standard 
model constants giving A ,  = 7.65. Experimental data in self-preserving APG flow 
also contain half-power layers. 

2.2. The need for a middle region 
A middle region is required fundamentally because if the wall region were to match 
with the wake region, then the boundary-layer approximation, 6/L - B ,  would be 
contradicted. The reasoning is as follows : suppose that the inner region with the 
scaling (2.3) were to overlap with an outer region in which y = O(6).  Then in the $ 
overlap layer the mean velocity determined by (2.3) would be of order u,(Su,/v)H. 
The outer region velocity scale is determined by the condition at  infinity, and so is 
of order U,. Overlap of the regions could occur only if 

u, - UP(6UP/V)t = u, O(S/L) t  
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Hence the supposed overlap leads to the contradiction 6 - L .  In the present analysis 
6/L - E has been assumed, although in general it is necessary only that 

1 %- 6/L %- €2. 

One can conclude that the APG velocity profile is not analogous to that of ZPG 
boundary layers - that analogy is often assumed. Similarly, it is inconsistent with 
the boundary-layer approximation to deduce a drag law by borrowing Millikan’s 
argument, as was done by Yaglom (1979). 

A middle region must be introduced in order to match the inner and outer regions. 
In this region y is O(Sy) where y -+ 1.  In the present case, where S/L = E ,  y can be E 

to any power p which satisfies 0 < p < 1. In $2.4 i t  is explained that y = e; is the 
power which matches to the constant eddy viscosity of Clauser (1956) in the outer 
region. In the present paper this f power will be used - it is the scaling shown in figure 
1. If instead, the outer region were modelled with a constant mixing length 
(Bradshaw 1967) then y = 6 would be appropriate. 

2.3. The middle region 

The lengthscale in the middle region is Sy. The velocity scale, which follows from this 
lengthscale and matching to the yi layer, is (a6y)r. With the choice for y just 
described, these are equivalent to 6 ~ 4  and Urn$. Although this latter form will be 
used, it should be appreciated that the middle-region velocity scale is determined by 
the pressure gradient and boundary-layer thickness : it is not U,. In the data of figure 
1, €4 x 0.17. This is the fraction of the boundary layer occupied by the middle region. 
Hence, the middle region is the portion of the profile in which dU/dy has decreased 
greatly from its near-wall level, and the profile turns upward. 

The non-dimensional variables in the middle region are distinguished by an 
overbar : 

The lengthscale here is dL,  with the present identification of 6/L and E .  The 
normalization of vT follows from matching with the eddy viscosity used in the outer, 
wake region. The scaling of k and &in (2.7) was determined from the required overlap 
with the wall region in the yi layer - see (3.4). 

The equation governing the mean flow in the middle region follows from (2.4) and 
(2.7) ; i t  is 

As y-t 0 this will match to the yi layer; as y-+ 00, we assume that VT tends to a 
constant, so U goes as y2. 

The standard k-& model (see $3) does not admit a power-law solution with U going 
as y”. Hence the eddy viscosity in the middle region cannot be described by this 
model. The middle-region viscosity must interpolate between the &&-type of 
viscosity, which is valid in the inner region, and the constant Clauser viscosity, which 
is valid in the outer region. This will be discussed in $3.2. A t  present we simply note 
that, given an eddy viscosity profile, (2.8) determines the mean flow profile in the 
middle region. To lowest order it is 

(VTU& = 1+0(&). (2.8) 
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2.4. The outer region 
The APG boundary layer has a large velocity deficit in its wake region. Hence, the 
mean momentum equation in the outer region cannot be linearized. The non- 
dimensional variables in the outer region are distinguished by a tilde : 

(2.10) 

Note that with the present identification of B and S/L, the factor normalizing the 
eddy viscosity is equal to U ,  S2/L. This is the scaling required in the nonlinear wake 
region ; by contrast, in the ZPG wake deficit law the eddy viscosity is normalized by 
u* a2/L, and the mean momentum equation can be linearized (Mellor 1972). k and E 

do not play a role in the outer region because the Clauser viscosity (see (3.13)) is 
adopted; they are included in (2.10) to show that k matches to a linear profile when 
i j + O ,  which fact will be used in 83.2, and to show how E varies across the boundary 
layer. The scaling for E is found by assuming that it is the same as that for 
production : 

The scaling for k comes from the order of magnitude estimate k 2 / &  N vT. 

9 = VT v"y (€&Urn) - V,/L. 

The mean momentum equation (2.4) becomes 

(2.11) 

in the outer, wake region. Here we have allowed for an $-dependence of U ,  and 6. The 
definition of L is that a, U ,  = - U ,  (see (2.1)) ; this was used in the derivation of 
(2.11). P is determined by the continuity equation: 

0,+F+7-(83/6)go, = 0. 

In the overlap layer between the middle and outer regions the scaling leads to 
power-law dependence. Writing the middle region functions (2.7) in outer variables 
and requiring that they match independently of E to the outer functions (2.10) 
implies & 

O+O(fy); E+O(Y)); €+O(Y'L); V T + 0 ( l ) .  (2.12) 

The behaviour of vT is by construction: we have let y = d in the middle region in 
order to obtain a constant viscosity in the outer region; the y" form of 0 is a 
consequence. If 0 were to be O ( p )  then y would have to be O ( ~ l / ( ~ ~ - l ) ) .  The relative 
size of the middle region in figure 1 would then be O(e2n/(2n-1)).  If instead of requiring 
that the eddy viscosity be constant in the outer region, one required the Prandtl 
mixing length, defined as (vT/Uy)f ,  to be constant, then n would be %. 

2.5. Discussion 
Consider a boundae layer starting in a small pressure gradient and developing into 
a region of increasingly adverse pressure gradient. Upstream the ZPG structure of 
Yajnik (1970) and Mellor (1972) is appropriate. Far downstream the present 
structure applies. The transition between these structures takes place as the log-layer 
becomes submerged below a yi layer. The present scaling does not reduce to  the ZPG 
scaling when u,+O, nor does the ZPG scaling reduce to the present scaling when 
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u* +. 0. A model for the near-wall region, such as that given by Townsend (1976, eq. 
5.15.3), is needed to interpolate between the ZPG and APG regions. His equation has 
the correct yi behaviour when uJuP + 0 and logarithmic behaviour when up/u* -+ 0. 
Hence it provides a formula for an intermediate region when uP/u* - 1. 

The transition from a log-layer to a half-power layer reflects the change of the wall 
region from a layer of constant stress to one of linearly varying stress. That 
observation may be used to develop a criterion for the validity of the present 
analysis. The shear stress in the overlap layer between the wall and transition regions 
is given by 

r = ay+u2,. (2.13) 

Since the lengthscales of the wall and transition regions are respectively s2L and 
V L  = dL, an intermediate lengthscale for the overlap layer is 1 = smilL, with 
5 < m < 1.  The present scaling requires that in the overlap layer the first term on the 
right-hand side of (2.13) be large compared to the second: a1 + u:. This inequality 
must be satisfied in order to obtain a yi layer. Using the estimate for 1 and the 
definition of up, the inequality can be written el-mu:/ui 4 1 ,  so another way to state 
the condition for the validity of the present scaling is 

su:/u; 4 Ern 4 1.  (2.14) 

Using 6/L N up/U, - E this can also be written as a criterion for the magnitude of 
the pressure gradient : 

L/6 < vm/u;. (2.15) 

Although this is a statement that L be sufficiently small, the right-hand side of this 
equation is asymptotically large a t  high Reynolds number - the precise scaling 
depends on the drag law -hence, the present approximations are valid when the 
lengthscale of the pressure gradient is still large compared to the boundary-layer 
thickness. Recall that L varies inversely with the pressure gradient, so L + co as the 
pressure gradient tends to zero. Then, according to (2.15) the present scaling becomes 
valid only when L has been reduced ; that is, when the pressure gradient has become 
sufficiently large. 

A number of important conclusions can be drawn from the scaling provided here. 
One is that a strong adverse pressure gradient applied to a ZPG boundary layer will 
cause the law-of-the-wall region to split into a wall region and a transition region, 
because the APG boundary layer has a large deficit wake that cannot match directly 
to the wall region. If u* is not small compared to up, then a log-layer can be 
distinguished within the present wall region. To the extent that a log-layer can be 
distinguished, it lies below the yi layer (Townsend 1976). 

Another noteworthy feature of the present scaling is the predicted behaviour of E :  

in the inner region E is O(e) ,  when normalized by V,/L; in the middle region it is 
O ( 6 ) ;  and in the outer region it is O(1). This result is rather unexpected because in 
the ZPG boundary layer E has a sharp peak at  the wall and decreases montonically 
away from the wall. The present result that E increases away from the wall in APG 
boundary layers seems a bit surprising. The experimental evidence of Bradshaw 
(1967) is not entirely conclusive, but it shows convincingly that E is large in the outer 
region of APG boundary layers, in striking contrast to the ZPG case. 

The scaling for k / V ,  shows it to increase from O(s2) to O(d)  to O(e) ,  moving away 
from the wall. Again, this contrasts to the ZPG case, for which k decreases greatly 
from the inner region to the outer region. This scaling for k agrees qualitatively with 
experimental trends (Bradshaw 1967). 
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The present scaling also shows that in the outer region the lowest-order balance in 
the turbulent kinetic energy equation is between production and dissipation ; the 
transport terms are formally of O ( E )  smaller. In the ZPG boundary layer the 
transport term is formally of the same order as production and dissipation. The 
difference between the cases of zero and adverse pressure gradient is the mean shear, 
and hence the rate of production of turbulent kinetic energy, is much larger in the 
latter. A corollary to the present scaling is that the standard &-equation (see $3) 
cannot be satisfied in the outer region : the transport term in the &-equation cannot 
balance production and dissipation of E, nor can these latter two terms balance each 
other in the conventional model (see (3.1)). Hence, the standard k-& model is 
inconsistent with the scaling of the outer region of APG turbulent boundary layers. 

3. Turbulence modelling 
The previous analysis suggests that one might solve the k-& model equations in the 

half-power, linear stress layer. This is done here. This solution is then used to propose 
an interpolation formula for the eddy viscosity in the middle layer. The interpolation 
formula is needed in order to obtain the matching conditions required in $4  to solve 
the outer-region momentum equations. 

3.1. The k-&mdel in the yi layer 
The yi-layer in APG boundary layers assumes the role which the log-layer plays in 
ZPG boundary layers. This layer corresponds to the simultaneous limits g+ XI and 
g+O. Just as the k--E model has a simple solution in the log-layer, so it has in the yi 
layer. 

The standard k - ~  equations (Pate1 et a2. 1985) in the steady-state limit, which is 
suitable to the order of approximation of the wall layer, are 

where C ,  and C ,  are constants and u, and ge are Prandtl numbers for the transport 
of kinetic energy and its dissipation respectively. The eddy viscosity is given by 

GT = CPI@/&. 

og = 

In  the yi layer, or from (2.6) at large g, 

A power-law solution in the form 0 = A,$' is sought. Equations 
then require that 

CT=A,$2-n; &=AE$';  i=Akg2n,  

where the A are constants. The formula (3.2) can only be satisfied if n 

(3.3) 

(3.1) and (3.3) 

(3.4) 

= a; this is the 
only power law consistent with the k--E model in a linear stress layer. 

given by 
After substitution of (3.4) into (3.1), (3.2) and (3.3) the A can be found. They are 

(3.5) 
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where 

This solution can be evaluated after substituting values for the model constants. 
Commonly used values are (Pate1 et al. 1985) 

c 61 =1 .44;  c , = 1 . 9 2 ;  c , = o . 0 9 ;  a ,=1.0;  a e = 1 . 3 .  

With these values, (3.5) gives 

A ,  = 7.65; A ,  = 5.37; A ,  = 3.95 (3.6) 

and from (3.2) A ,  = 0.26. Rather similar values are obtained from the k-E-u model 
of Durbin (1991); for example, i t  gives A ,  = 4.02 and A ,  = 6.75. The similarity of 
these models in the yi layer is important because the k--E model does not behave 
correctly near to walls. 

Yaglom (1979) reviews analyses by himself and Kader of various experimental 
data on APG boundary layers. In  terms of their non-dimensional variable 2, Yaglom 
and Kader find 

k x 1.2u2,Z, -m x 0.25u2,Z, U x 4.5u,Zi (3.7) 

in the half-power region. Yaglom uses z as the direction normal to the wall and 
defines Z as az/u:. It is not clear why the constant in the expression for -W is not 
unity. In the present analysis (see (3.2)) -m = 3, so A ,  is equal to -k/m. If an 
experimental value for A ,  is evaluated by forming this ratio, then (3.7) gives it to be 
A ,  = 4.8. A ,  might similarly be evaluated as U / (  -m)i. The data in (3.7) then give 
A ,  = 9.0. Unfortunately the mean flow and Reynolds stress data cited by Yaglom 
are from different experiments, so it is not clear that this evaluation of A ,  is valid. 
The alternative is simply to accept the value ofA, = 4.5 given in (3.7). In  either case, 
there is rough agreement between the k-E model with standard constants and the 
experimental data. 

In  practice it is often found that the shear stress gradient in the half-power region 
is less than the pressure gradient. To fit experimental data a must be replaced by 
an ‘effective pressure gradient’ (McDonald 1969). The failure to  do this could be a 
source of scatter in the data considered by Yaglom. Townsend (1976) proposes that 
a be obtained by adding an average of the inertia term to the pressure gradient; 
Melnik (1989) introduces a slip velocity, which adds a term to the pressure gradient 
in the inner region. The empirical need for an ‘effective pressure gradient ’ may reflect 
the fact that the yi region is not extremely thin. 

3.2. Middle-region eddy viscosity 
In the analysis of the yi layer given in 53.1, i t  was found that as y+ 0 the turbulent 
kinetic energy tends to  E = A,g,  where A ,  ’= 3.95 if the standard k-E constants are 
used. Matching the mean velocity to the y2 asymptote of the outer region shows that 
k again increases linearly with (see (2.12)). It seems that E = A,Y throughout the 
middle layer. Another justification for this linear increase of k is that the Reynolds 
shear stress increases linearly in the middle region, and the kinetic energy might be 
expected to  behave similarly. 

The turbulent kinetic energy equation in the middle region is given to  leading 
order by 
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in which turbulent transport is modelled by an eddy viscosity, (Tk is a Prandtl 
number for this transport, and @ represents the rate of energy production: 

9 = -mug = FT (up)’. (3.9) 

Equation (3.8) expresses a balance between dissipation, production and turbulent 
transport of turbulent kinetic energy. The first integral of the mean momentum 
equation (2.8) is VTOg = Y+O(d) .  Substitution of this into (3.9) shows that 
FT@ = y”. Using this and k = A k y  in (3.8) gives 

(3.10) 

As in the k-& eddy viscosity formula given below (2.4), we let g= C (-)k’/VT 
(although in this case the g-dependence is not associated with ‘wall damping ). Then 
(3.10) becomes 

’,Y 

A 
(C,Ai-l)y” =”-aB%. 

2uk 
(3.11) 

The standard k-& model uses C,, = 0.09, uk = 1.0 and gives A, = 3.95. When 
substituted into (3.11) this gives the yi behaviour for vT that is appropriate to the yi 
layer. Matching to the constant viscosity in the outer region requires that 

C, = l/AE x 0.064. 

Thus, one might view the middle layer as a region across which C,, decreases from 
0.09 to 0.064. 

This transition might be accomplished by the ad hoc interpolation 

C,, = 1/AE+ (0.09- l/Ai)e-g/d = 0.064+0.026e-g//“. 

Then, integrating (3.11) 

2 
E$ = - (0.09A; - 1) 

2 
= - (0.09A: - 1) @as - e-y@ (2ds + 2yd2 +pa)}. (3.12) 

The constant Z will be found by matching to the Clauser viscosity: 

v, = (EC,) u, 6,, (3.13) 

where C,  is a constant and 6, is the displacement thickness. The constant in (3.13) 
is expressed as sC, to be consistent with the present asymptotic analysis - that  is, 
this form leads to a systematic balance between inertia, pressure gradient and shear 
stress gradient in the outer region. Note that with the scaling (2.10), the Clauser 
model becomes CT = C,S,. It is more usual to equate BC, to 0.017. However, here C,  
will be treated as a model parameter : experiments show quite clearly that sC, is not 
equal to 0.017 in APG boundary layers (Simpson, Chew & Shivaprasad 1981). 

Equating the limit of (3.12) as Y+ GO to the Clauser viscosity gives 

4 
-(0.09AE-1)d3 = (C,6;)2; (3.14) 
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or, J = 1.35(Cc&)j with the usual k-c model constants. & = 6,/6 is the scaled 
displacement thickness. 

The interpolation formula for C,, is somewhat arbitrary. A simpler interpolation 
for pT is obtained if C,, = 0.064 + 0.026 e-uaId', Then 

-z - VT - - (3.15) 

and J = 2.45(Cc &)!. In dimensional terms this can be written 

), v; = v&( 1 - e-au'/vL 2.45' 

where v, is the constant eddy viscosity (3.13) in the outer region. A corresponding 
interpolation formula for ZPG boundary layers is obtained by replacing the linear 
stress variation, ay, by the surface stress, u i ,  and by replacing the constant 2.453 
with 1 1 2 ,  where K is the von Karman constant. Then 

(3.16) 

As y+ 00 this becomes the Clauser viscosity, v,; as y + O ,  V ~ + K U *  y. This 
interpolation formula agrees quite well with experimental data. The formula (3.12) 
was used to evaluate the constants required for the computations in 54.3; however, 
it will be shown that similar results are obtained when (3.15) is used. 

z a e e  v& = V:(l-e-"U+" Ivm).  

4. Expansions, matching and skin friction 
The scaling given in 52 suggests how asymptotic expansions can be developed in 

each of the regions. Boundary conditions are given at the wall (0 = 0 at $ = 0) and 
in the free stream (o+l as i j + 0 0 ) .  Thus, to solve the two-point boundary-value 
problem for the mean flow, and to determine the skin friction, the expansions in the 
three regions must be matched in their overlap domains. This procedure is described 
in the present section. 

4.1. Matched expansions 
Equation (2.5) suggests that in the inner region the mean flow should be expanded 
as 

The k--E model suggests a similar expansion for 5,. The solution to (2.0) for O0 is 

0 = oo+€201+ ... . (4.1) 

To match with the middle region, this solution can be rewritten in middle-region 
variables and expanded for E + O  (Van Dyke 1975). Let 

Then the asymptotic matching principle is that as E +  0, 

iL (U,/U, €i) Oo(qup S € t / V )  
1 -  = &J 0 ( -  Yl:) c- 

-+A, ya + €46, - 6 u i  A,/(uL ya) + O(€). (4.4) 
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Note that the inner region is not exponentially thin in the APG boundary layer, 
whereas it is in ZPG boundary layers. 

Equation (4.4) suggests that the middle-region expansion proceeds as 

u= u o + E ~ u , + E ~ ? 7 2 + . . . ,  (4.5) 

with a similar expansion for i$ Then the middle-region equation (2.8) and (4.4) show 
that 

I 

It will become clear that the middle-region expansion must be carried to O(d)  if the 
friction velocity u* is to be determined. 

The solution (4.6) can be rewritten in outer variables and expanded as a+O. Let 

in which F, is the eddy viscosity evaluated as g+ 00 ; in the present case this is equal 
to CT, the constant value determined by the Clauser model. It will be assumed that 
the integrals converge in the form written. Then, as in (4.4), 

o+ E m ( ( y " / E : )  

The behaviour of V at large f j  is needed to complete the matching with the outer 
region. In the middle region U = U ,  e~ITr((y/G&). If E - or, in the present context b/L 
-is taken as constant, independent of z, then 

u, = -EkJw(u+jjp17), (4.9) 

where p = &,/a; the abbreviation /3 for this parameter is introduced for convenience. 
If the definition (2.1) of L is substituted into the expression for p it assumes the 
more familiar dimensional form p = -8, U,/6U,,. In general (4.9) should contain 
d In s/df as an additional parameter ; but we are simplifying matters by assuming this 
term to be negligible. (In the self-similar analysis of $4.2 it will be necessary to take 
B to be constant to a first approximation.) 

It follows from (4.9) and the continuity equation (2.4) that to lowest order in E 

in the middle region. Substituting (4.9) gives 

V = ~~U,[ ( l -p) lOdy+pyO] .  (4.10) 
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As g+ 00 this gives 
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where 

---(1+2/9-+&7+Cv, V y" 
u, E2 6F, 

(4.11) 

(4.12) 

Expression (4.8) suggests the outer-region expansion 

8 = uo 4 q  i- ma i- . . . , (4.13) 

and similarly for P. It is assumed that the Clauser model for CT is valid to all orders. 
The equation (2.11) for the mean flow in the outer region depends on &,/a E /3. In  
order to solve the outer flow p must be expanded as 

p = p0+Ep1+eip2+ ... . (4.14) 

This is necessary because ,8 parametrizes the dependence of u* on the pressure 
gradient; in other words, the mean flow equations are being solved for /3 given u*, 
which is a sort of inverse formulation of the skin friction problem. In a formal 
asymptotic development, the expansions (4.13) and (4.14) must be substituted into 

which are the mean momentum and continuity equations in the outer region. 
These equations must be solved subject to the matching conditions (4.8). Thus, at 

J = O :  - - I 

Do=u 00 = o ;  U , = U , , = O ;  (4.16) 
Oa = CU, 02, = 0;  o3 = Cu, 03, = u",u;v,. 

As J +  a, O0+ 1 and on+O, n > 1. One sees that 0, = 0. 
By continuity V is O ( E ~ U , )  in the middle region (see (4.11)). Then, by the scaling 

in (2.10) and the expansion (4.13), v3(0) = CV where C, is the constant defined in 
(4.12). All terms in V lower than the third order vanish a t  # = 0. 

4.2. Self-similar case 
Rather than address the full boundary-layer problem posed by (4.15) and (4.16), we 
will restrict attention to self-similar flow, in the interest of tractability, and for 
illustrative purposes. The definition of self-similarity is that partial derivatives with 
respect to P should vanish from (4.15). For strict self-similarity all coefficients in the 
equations and boundary conditions must be independent of 5 :  /3, CT, u*/u, and E all 
have to be constant. At lowest order in E ,  self-similarity only requires that /3 and PT be 
constant, which essentially is the condition usually cited for high-Reynolds-number 
flow (Clauser 1956). The additional conditions listed are general requirements 
(Townsend 1976) and not peculiar to the present analysis. The asymptotic 
approximations of $4.1 would remain valid to the order given if p and CT were 
allowed to have P-dependence of o(e ) ,  U J U ,  were allowed to have B-dependence of 
o( 1) and E were allowed to have P-dependence of o ( d ) .  Thus one might also regard the 
present analysis as an approximation suitable to a slowly varying flow. 

Under self-similarity, (4.15) can be simplified by a change of dependent variable. 
Let f(J) be defined by o = f '(y") (4.17) 
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so that f '  is equal to the complete non-dimensional velocity, not to only its defect. 
APG boundary layers have a large wake deficit, so linearization about the free- 
stream velocity is not justified. 

The continuity equation will be satisfied if 

P =  (l-P)f+P&f'. (4.18) 

Substituting (4.17) and (4.18) into (4.15) gives 

(1 -P) a''+ 1 -fQ = FT f"'. (4.19) 

This must be solved subject tof'(co) = 1 and conditions (4.16) at i j  = 0. 

condition at infinity : 
An equation for P is obtained by integrating (4.19) subject to the boundary 

1; { 1 -ff2} dij + GTf "(0) 
(4.20) 7. p - 1 =  

The right-hand side of (4.20) is implicitly a function of E and uJu,. Hence (4.20) is 
the drag law relating skin friction to  pressure gradient - at least implicitly. 

In  a formal development, the self similar function f must be expanded, as 0 was 
in (4.13), and substituted into (4.19) along with the expansion (4.14) of p. This leads 
to the series of problems, 

(4.21) 1 
(1 -PO)fof: + 1 -fL2 = FT f:, 

fi = 0, PI = 0, 

(1 - P o )  (fo f i  + f z  fa -2fL fi = 4f: +Pz f o  K, 
( ' - P O )  (f0 fi +f3 f:) - 'f,' fo' = 'Tf; + p 3  f0 f:' 

Strictly, if FT depends on a,/& as in (3.13) it too should be expanded; for simplicity, 
this was not done in (4.21). The boundary conditions which follow from (4.16) are 

(4.22) 

fO(0) =fim =f:(o) = 0, fJm) = 1; 

fi(0) = f i ( O )  =fL(w) = 0, fL(0) = Cu; 

(recall that Fa = FT = G,6",). These boundary conditions to (4.21) determine bothf 
and P. 

At lowest order, from (4.17), (4.21) and (4.22), 

where x = ~ o m ( l - ~ ) z d g / ~ ( l - ~ ) d g .  0 

This was derived in the same manner as (4.20). If 0 < 0< 1 for all #, then 

o < x < 1  
and Po > 3. Thus, a self-similar solution (without flow reversal) is only possible if 
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a = - 1/p > -5. An asymptotic analysis of (4.19) shows that if B 2 3, the solution 
with bounded displacement thickness behaves like 

f'+ 1 + 0 ( ~ ( 1 - 8 ) y * / 2 ~ ~ / ~ c ~ - n i c 8 - 1 ) )  as #+ 00. 

Thus, the convergence to uniform flow at infinity is exponentially fast. This 
observation was help in the numerical analysis. 

4.3. Numerical solution 
It is convenient for numerical purposes to change the independent variable in (4.19) 
to z = y/C& and to introduce the dependent variable H ( z )  = (f-y")/v"k. Equation 
(4.19) then becomes 

(1-B) (H+z)H"-(2+H')H' = H .  (4.23) 

Boundary conditions to (4.23) follow from (4.22) and the definition of H :  

Rather than formally expanding the solution, we regard the above problem as an 
approximation for small but finite a ;  thus, in the present section we are using a 
consistent small-a approximation, but not evaluating a formal asymptotic series. 
This is done for reasons which will become clear as the numerical results are 
presented. 

The normalized displacement thickness 

is equal to -CkH(co).  Hence, the Clauser viscosity (3.13) becomes 

CT = vm = (CcH(oo))2.  (4.25) 

The Clauser constant C,  is regarded as an empirical constant of the flow. In the 
numerical computations (4.25) was substituted into the boundary conditions (4.24). 

Before (4.23) can be integrated numerically, values of the constants in (4.24) are 
needed. For the barred constants, the interpolation formula (3.12) was used. 
Evaluating the integrals in (4.7) and (4.12) numerically gives 

(4.26) 

8 is given by (3.14) with (4.25) : 

= 1.35(Cc H ( w ) ) ~ .  

It is assumed that no first-order correction to vT is needed, so that @, is equal to 
8, (see (4.7)). 8, is evaluated using equation (5.15.3) of Townsend (1976). In the 
present context, that equation behaves as 



Scaling of adverse-pressure-gradient boundary layers 715 

3.0 I 

FIQIJRE 2. Mean velocity profiles for various non-dimensional skin frictions : 
- , u*/up = 0;  ---, 5 ;  -*-, 9; * - * * , 10. 

Substituting the standard (ZPG) values of K = 0.4, B/K = 5.0 and the present value 
of A, = 7.65 gives 

(4.27) 8, = 0.82-+7.5>1nf. 

The value of B is most likely influenced by pressure gradient, so (4.27) is probably 
unsuitable when the pressure gradient times 8, is large compared to the skin friction. 
In fact, this formulation for 8, is not likely to be appropriate when u*/up+O 
because (4.27) is not analytic at zero surface stress - u* is defined as the square root 
of the surface stress. Also, the logarithmic formula used in (4.27) is not likely to be 
valid when u* becomes very small. As was mentioned previously, a more suitable 
treatment of the wall layer might make use of a closure model; but such an 
elaboration is well beyond the scope of the present paper. 

4.4. Results 
A fourth-order Runge-Kutta shooting method was used to solve (4.23) with (4.24) 
numerically. Some results are shown in figures 2 4 .  Figure 2 shows profiles of the 
mean velocity with C, = 1.7 and E = 0.002 and for various values of u*/up. Because 
the numerical constants in (4.26) are relatively large, E is required to be quite small. 
The figure shows how the wake fills in as the friction velocity is increased. The 
displacement thickness is reduced thereby, so the Clauser viscosity decreases as the 
friction velocity increases. 

Figure 3 shows how varies with surface stress rW, normalized here as mw/u2p, 
where r ,  = u i  ; .rw/$, is a natural quantity to plot on the abscissa because it appears 
in the boundary condition (4.24). The numerical values on the abscissa are small, 
since uJuP is of order unity ; the axis extends to values of this ratio equal to about 

u* u u  

U P  UP UP 
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FIQURE 3. Dependence of on skin friction. E = 0.002 (-), 0.004 (.  . . . . )  : 
0,  C, =0.4; 0,  1.0; Ix], 1.7. 
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%I.: 
FIQURE 4. Dependence of /3 on skin friction for E = 0.01 : 

0, C, =0.4; X ,  0.7; 0 ,  1.0; A, 1.3; [XI, 1.7. 

10. Curves are plotted with E = 0.004 and 0.002, for the values of C, indicated. Figure 
4 contains similar curves for 8 = 0.01. This figure includes the commonly used value 
of the Clauser constant EC, = 0.017. The dependence of /3 on C, is quite different from 
that in figure 3; but its dependence on r,  is qualitatively similar. 

/3 is defined as -slU/U'S, so it is inversely proportional to the adverse pressure 
gradient. In figures 3 and 4, a t  large surface stress the skin friction decreases as the 
pressure gradient becomes increasingly adverse ; i.e. as /3 decreases. This behaviour 
might be expected. However, as r, increases from zero, there is a range of r, within 
which /3 decreases before increasing a t  large 7,; so the solution for r, at given p is 
double valued in a very small range of /3. The decrease of /3 at small surface stress 
might be rationalized by attributing it to a decrease of 6' as r,  increases from 0 :  6' 
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appears in the numerator of j3 so this decreases j3. One expects more rapid growth of 
S as a boundary layer approaches a point of zero mean skin friction. However, it 
should be recognized that the present solution is for a self-similar, equilibrium layer, 
so it is not entirely appropriate to interpret figure 3 in terms of a layer approaching 
a point of vanishing skin friction. 

The mathematical source of the initial decrease of p with increasing 7, is as follows. 
Equations (4.23) and (4.24) show that j3 depends on E and u* through only the 
boundary conditions ; thus 

j3 = F(H(O),H’(O),H”(O)).  

This relation can be differentiated and evaluated at (0, - 1 , O )  to find the limiting 
behaviour when E + 0. The derivatives were computed numerically. The derivatives 
with respect to the first, second and third arguments were found to be a,F = -21.3, 
a,F = - 14.1 and a3F = 0.0 at (0, - 1 , O ) .  AlsoF(0, - 1 , O )  = 6.029. We were unable to 
prove that a,F(O, - 1 , O )  = 0, the result cited is entirely numerical : an analysis of a 
linearized version of (4.23) gave a non-zero value for this derivative ; the numerical 
value of 0 would seem to be a consequence of the nonlinear advective derivative 
vanishing at  y” = 0. 

The dependence of j3 on u* is entirely through the O ( E )  terms in the second and 
third arguments of F .  However, at (0, - 1,0), F becomes insensitive to its third 
argument. Hence j3 decreases with increasing 7, (when UJU, > 0.9) because 6, 
increases with u* and the derivative of F with respect to its second argument is 
negative. When u,/u,<O.9 there is a slight increase of /3 with u, because 6, 
becomes negative initially (see (4.27)). This initial increase becomes more pronounced 
as E increases, as seen in figure 4 ;  however, it should again be emphasized that (4.27) 
is unlikely to be valid as u,+O. Although the detailed behaviour of j3 is a 
consequence of the formula used for e,, the values for derivatives of F are a property 
of (4.23), which is essentially the Falkner-Skan equation. The only modelling 
involved in that equation is the assumption of a constant eddy viscosity in the outer 
region. Thus, the decrease of p with increasing u* will occur with any model for which 
8, increases with u*. Assuming that j3 ultimately increases, the solution inevitably 
will be double valued. 

The rapid increase of j3 at large 7, is a consequence of the boundary condition on 
H .  This observation was made first in the solution to a linearized version of (4.23), 
and then confirmed by numerical computations with H“(0) set to zero. When H”(0) 
was set to zero, ,!l continued to decrease with increasing u*, instead of turning up 
sharply as it does in the figures. In the light of previous paragraphs, it is clear that 
for H”(0) to have an effect on j3 the boundary conditions must differ from (0, - 1 , O ) .  
Although this might at  first seem to be inconsistent with the small-s approximation, 
it can be seen that the outer problem remains unchanged as long as Eu:/ui is O ( E P )  

for any p > 0. As long as this condition is satisfied, an outer region can be 
distinguished asymptotically (see the reasoning behind (2.14)). The present problem 
then remains appropriate even when u* becomes large, provided EU”,U~ is small, as 
it is in figures 3 and 4. 

In order to assess the sensitivity of our results to the interpolation formula for rT, 
the constants in (4.26) were re-evaluated using (3.15). This gives 

(4.28) 

with J = 2.45(CcH(m))t. The constants in these expressions for (7, and CV are 
considerably smaller than previously, although much of the decrease is counteracted 
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FIQURE 5. Comparison of results for two interpolation formulae for E = 0.002, C, = 1.0: 
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FIUURE 6. Comparison of computations (-) to experimental data on self-similar APG 
boundary layers. Data from Coles & Hirst (1968) : , Bradshaw & Ferris; m, Stratford. 

by the increase in a. Figure 5 shows computations using (4.28) compared to those 
using (4.26). The qualitative behaviour is very similar in the two cases. 

Computations were done with E = 0.005 and uJuP = 5.0, and with e = 0.007 and 
u*/u, = 1.6, corresponding respectively to experimental self-similar APG boundary 
layers measured by Bradshaw & Ferris, and by Stratford (Coles & Hirst 1968). The 
former experiment is that  shown by figure 1. Those experimental data points which 
lay in the outer region are plotted in figure 6, along with computed curves. The outer 
region of the experiments was demarcated by the top of the half-power layer, which 
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FIQURE 7. Comparison of computations (-) to experiment by Driver (1991) : 
x , s = 1 5 2 m m ;  0 , 2 2 8 m m ;  + ,304mm. 

can be determined from plots like those of Schofield (1981, figure 5). The y-coordinate 
of the data was arbitrarily scaled so that the last experimental point fell on the 
computed curve ; this amounts t o  normalizing y by the 99 % boundary-layer 
thickness. C,  was adjusted so that the computation agreed reasonably well with the 
lowest data point. The values of C,  were 1.5 for the Bradshaw data and 0.4 for the 
Stratford data. The primary purpose of figure 6 is to show that reasonable agreement 
can be achieved with the experimental profiles. A further point of agreement is that 
Stratford’s boundary layer has 1/B = 0.23, while our computation gave 1/B = 0.21. 
A point of disagreement is that Bradshaw’s layer has 1/B= 0.255 while our 
computation gave 1//3 = 0.15. Indeed, with the constants (4.26) we did not obtain 
values of 1//3 as high as 0.255 in any of our computations. This could very likely 
reflect the coarseness of the present turbulence modelling. 

In  figure 7 data from Driver (1991) is shown along with a computation of a wake- 
region profile. This computation had E = 0.005 and UJU, = 3.66, corresponding to 
the experiment, and C, was set to 0.34. In the figure data are shown all the way to 
the wall so that the relative location of the outer region can be seen. The computed 
curve extends only through the wake portion of the data, where it is valid. Driver’s 
experiment was not designed to produce self-similar flow. We have selected data 
from his case B, which does not separate, in a downstream region where the profiles 
become approximately self-similar. 

4.5. Discussion 
When the results shown in figures 3 and 4 were obtained, we were at first disconcerted 
to find that decreased with increasing u* over a range of surface stress, and that 
u* was a double-valued function of /3. We subsequently found that this behaviour 
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had been noticed some time ago by Clauser (1954); he had found experimental 
evidence that two self-similar turbulent boundary layers might exist for a given 
APG. He reached this conclusion through a semi-empirical evaluation of the 
integrated momentum balance, using his wind tunnel data for equilibrium boundary 
layers. More recent analyses, also based on semi-empirical evaluations of the 
integrated momentum balance, concur with Clauser’s original conclusion (Townsend 
1976; Schofield 1981). It is remarkable that we have been led to the same result 
through a very different sort of analysis. Our figure 3 bears a striking similarity to 
Clauser’s figure 26 - the quantities plotted on his axes are inverse to ours; thus, his 
horizontal axis is proportional to 1/7, and his vertical axis is 1//3. Clauser observed 
that the two boundary layers which exist in a small range of p correspond to flows 
either with a large momentum deficit, having small skin friction, or with a small 
deficit, and being near to a ZPG boundary layer. In  the former case the downstream 
increase of the momentum thickness is balanced largely by pressure forces, while in 
the latter it is balanced primarily by skin friction. Thus, the two equilibrium layers 
are distinguished by how prominent a role the pressure gradient plays. 

As is frequently remarked, the conditions for self-similarity require that S grows 
linearly with z, and that U ,  varies with a negative power of z (Townsend 1976) : in 
the present notation the required power-law dependence is U ,  - x-’/p. The Stratford, 
zero-stress equilibrium boundary layer has 1//3 = 0.23 and Clauser (1954) suggested 
that in his experiments the largest value for which a non-separating equilibrium 
boundary layer might be produced was 1/p = 0.29. In  the present analysis the value 
of p at zero skin friction depends on B and C,, but i t  agrees in order of magnitude with 
these experimental values; for instance, in figure 3 a t  7, = 0, 1/p lies between 0.20 
and 0.22. When B = 0.002 and C, = 1.7 the maximum value of 1//3 is 0.23. Thus, 
despite the fairly crude modelling, the results of our analysis seem reasonable. 

The dependence of /3 on 7, when 7, is small is determined by the boundary condition 
on H ,  as was explained in $4.3. This boundary condition was derived by asymptotic 
matching between the outer, middle and inner regions. The asymptotic matching is 
essential to our analysis. It is also essential that the fully nonlinear Falkner-Skan 
equation was solved. An analysis (not presented here) of a linearized version of that 
equation resulted in the ?,-dependence of p being determined by the boundary 
condition on H ,  with the consequence that /3 was single valued, and increased 
linearly with 7,. The numerical results are so drastically different as to make the 
linearized analysis useless. 

It should be remarked that our analysis bears some similarity to one presented in 
Townsend (1976). However, Townsend simply patched together assumed velocity 
profiles in the wall and wake regions. He did not insist that they merge smoothly, as 
is done by asymptotic matching; therefore, he did not recognize that the wall and 
wake regions of strong APG boundary layers do not match. Thus there is a rather 
substantial formal difference between the present development and Townsend’s. In 
the wake region Townsend noted that Clauser’s eddy viscosity model led to the 
Falkner-Skan equation, but Townsend did not solve this equation ; rather, he 
adopted a shape model which is a linear combination of solutions to the linearized 
Falkner-Skan equation. We have noted above that the linearized equation does not 
give even qualitatively correct results. Thus, one can have little confidence in the 
development described by Townsend. Nevertheless, it should duly be noted that 
Townsend recognized that there are many significant differences between APG and 
ZPG boundary layers, such as the large wake deficit in the former, and these insights 
guided his analysis. 
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The solution to the matching problem described here gives the skin friction law for 
APG boundary layers. However, that solution had to be obtained numerically. This 
is rather different from the logarithmic law which exists for ZPG boundary layers : 
that law contains a constant which must be determined by experiment or by 
modelling, but the basic logarithmic dependence can be deduced from the asymptotic 
scaling alone (Mellor 1972). 

Some previous investigators have assumed that the ZPG friction law applies up to 
separation (Melnik 1989). A consequence of this assumption is that the ‘slip velocity’ 
in the outer region (f’(0) in the present case) must vanish when the skin friction 
vanishes. However, the experimental evidence is quite strong that a yi region forms 
in the APG boundary layer prior to the skin friction vanishing (Schofield 1981). This 
means that the present structure will exist upstream of a turbulent separation. One 
sees in (4.22) and (4.24) that the middle region produces a slip velocity of O(d) in the 
outer region, while the skin friction does not enter until O ( E ) .  Thus, there is no 
obvious reason for the slip velocity to vanish with the skin friction. This observation 
is significant to the issue of whether a Goldstein type of singularity is associated with 
turbulent separation (Melnik 1989, 1991 ; of course, it is not clear that a mean flow 
eddy viscosity model can elucidate the structure of turbulent separation). Only the 
outer region is nonlinear, so any movable singularity must occur in that region. If the 
slip velocity is not zero when the skin friction vanishes then flow reversal in the 
nonlinear region will not occur at a point of zero wall stress. Thus, the nature of the 
breakdown of the turbulent-boundary-layer approximation at  separation remains to 
be clarified. 

It should be appreciated that the self-similar solutions presented here do not apply 
directly to separating flow; the full problem (4.15) and (4.16) must be solved. The 
limit u* + 0 in the self-similar solution corresponds to the Stratford, zero-stress 
turbulent boundary layer (Perry & Schofield 1973), and not to a boundary layer with 
a point of zero skin friction. 

Because a turbulent boundary layer can withstand a large adverse pressure 
gradient, it can develop a large velocity defect without mean flow reversal. That 
leads to the substantial changes in scaling and in turbulence structure which have 
been discussed in the present paper. 

REFERENCES 

BRADSHAW, P. 1967 Equilibrium turbulent boundary layers. J .  Fluid Mech. 29, 625-646. 
BUSH, W. B. & FENDELL, F .  E. 1972 Asymptotic analysis of turbulent channel and boundary- 

CLAUSER, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J .  Aeronaut. Sci. 

CLAUSER, F. H.  1956 The turbulent boundary layer. Adw. Appl .  Mech. 4, 1-51. 
COLES, D. E. & HIRST, E. A. (ED.)  1968 Computation of Turbulent Boundary Layers, AFOSR-ZFP- 

DRIVER, D. M. 1991 Reynolds shear stress measurements in a separated boundary layer flow. 

DURBIN, P. A. 1991 Near wall turbulence closure modelling without ‘damping functions ’. Theor. 

MCDONALD, H. 1969 The effect of pressure gradient on the law of the wall in turbulent flow. 

MELLOR, G.  L. 1972 The large Reynolds number asymptotic theory of turbulent boundary layers. 

layer flow. J .  Fluid Mech. 56, 657481. 

21, 91-108. 

Stanford Conference. 

AIAA Paper 91-1787. 

Comput. Fluid Dyn. 3 ,  1-13. 

J .  Fluid Mech. 35, 311-336. 

Zntl J .  E q q  Sci. 10, 851-873. 



722 P. A .  Durbin and S.  E.  Belcher 

MELNIK, R. E. 1989 An asymptotic theory of turbulent separation. Computers Fluids 17,165-184. 
MELNIK, R. E. 1991 Some applications of asymptotic theory to turbulent flow. AIAA Paper 91- 

0220. 
PATEL, V. C., RODI, W. & SCHEURER, G. 1985 Turbulence models for near-wall and low Reynolds 

number flows: a review. AIAA J. 23, 1308-1319. 
PERRY, A. E. & SCHOFIELD, W. H. 1973 Mean velocity and shear stress distributions in turbulent 

boundary layers. Phys. Fluids 16, 2068-2074. 
SCHOFIELD, W. H. 1981 Equilibrium boundary layers in moderate to strong adverse pressure 

gradient. J. Fluid Mech. 113, 91-122. 
SIMPSON, R. L., CHEW, Y. T. & SHIVAPRASAD, B. G. 1981 The structure of a separating boundary 

layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 23-51. 
TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flows. Cambridge University Press. 
VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic Press. 
YAQLOM, A. M. 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall 

YAJNIK, K. S. 1970 Asymptotic theory of turbulent shear flows. J. Fluid Mech. 42, 411427. 
flows. Ann. Rev. Fluid Mech. 11, 505-540. 


